On rates of convergence for posterior distributions under misspecification

نویسنده

  • HENG LIAN
چکیده

We extend the approach of Walker (2003, 2004) to the case of misspecified models. A sufficient condition for establishing rates of convergence is given based on a key identity involving martingales, which does not require construction of tests. We also show roughly that the result obtained by using tests can also be obtained by our approach, which demonstrates the potential wider applicability of this method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Rates of Nonparametric Posterior Distributions

We study the asymptotic behavior of posterior distributions. We present general posterior convergence rate theorems, which extend several results on posterior convergence rates provided by Ghosal and Van der Vaart (2000), Shen and Wasserman (2001) and Walker, Lijor and Prunster (2007). Our main tools are the Hausdorff α-entropy introduced by Xing and Ranneby (2008) and a new notion of prior con...

متن کامل

On convergence rates of Bayesian predictive densities and posterior distributions

Frequentist-style large-sample properties of Bayesian posterior distributions, such as consistency and convergence rates, are important considerations in nonparametric problems. In this paper we give an analysis of Bayesian asymptotics based primarily on predictive densities. Our analysis is unified in the sense that essentially the same approach can be taken to develop convergence rate results...

متن کامل

Testing a Point Null Hypothesis against One-Sided for Non Regular and Exponential Families: The Reconcilability Condition to P-values and Posterior Probability

In this paper, the reconcilability between the P-value and the posterior probability in testing a point null hypothesis against the one-sided hypothesis is considered. Two essential families, non regular and exponential family of distributions, are studied. It was shown in a non regular family of distributions; in some cases, it is possible to find a prior distribution function under which P-va...

متن کامل

Convergence Rates for Bayesian Density Estimation of Infinite-dimensional Exponential Families

We study the rate of convergence of posterior distributions in density estimation problems for log-densities in periodic Sobolev classes characterized by a smoothness parameter p. The posterior expected density provides a nonparametric estimation procedure attaining the optimal minimax rate of convergence under Hellinger loss if the posterior distribution achieves the optimal rate over certain ...

متن کامل

Posterior Convergence Rates of Dirichlet Mixtures at Smooth Densities

We study the rates of convergence of the posterior distribution for Bayesian density estimation with Dirichlet mixtures of normal distributions as the prior. The true density is assumed to be twice continuously differentiable. The bandwidth is given a sequence of priors which is obtained by scaling a single prior by an appropriate order. In order to handle this problem, we derive a new general ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007